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The relevance of research in Cognitive Science to the focus of this
handbook, Knowledge Engineering, is in its contribution to the
understanding of problem solving processes. Cognitive Science has links to
Artificial Intelligence, to cognitive psychology, to information processing,
to languagebased information systems, and a variety of other areas. For
this discussion, however, the focus will be on Cognitive Science as a model
for understanding the application of human skills towarl efficient,
effective problem-solving. Knowledge engineering questions lie within a
framewerk of information processing and of how a comprehensivs analysis of
critical skills can assist in moving novice performance to expert
performance in as efficient a manner as possible.

The Cognitive Science model has been applied most broadly at the
variable level for analyzing the scope of a problem and for specifying the
performance skills that relate to each variable. For example, when a
research team wanted to analyze the relationship between school performance
on mathematics achievement and the students' language skills, the questions
could have been addressei by considering individual topics that relate to
math and language perfcmance. Application of a cognitive science model, by
contrast, began by addressing the problem state (what was known) and the
goal state (what was to be learned) and then framing the problem broadly in
terms of relevant variables (Cocking & Chipman, 1988).

The beginning point in this analysis was to take a systematic look at
the relationships between math achievement and language status variables.
This approach required an examination of the relevant variables that relate
to these children's conceptual, developmental, and linguistic status for
receiving and utilizing cleasroom instruction. The aspects of the problem
were schematized along the lines of Input to the children and Output (i.e.
child performance). On the Input side are Cognitive Ability Patterns
(including math learning, language skills, reading); Educational Ogportunity
(including time on math tasks, quality of instruction, receptive language,
parental assistance, parental education); and Motivation to Engage
(including cultural values, parental influence, expectations for reward,
motiviational nature of instruction interactions, equitable treatment). On
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the Output side are Measurement Issues (including sensitivity to
developmental status, culture fairness), Lanagume of Test (including
instructions for what to do), and Performance Variation (including, types of
meth problems - word versus computational problems, and math versus other
cognitive skills of performance).

Input/Output variables, however, frame the problem only in the most
global terms. Specific skills are associated with the array of variables
and it is at this next level of analysis - at the level of information
processing skills - that the Cognitive Science model builds upon research
fran cognitive and developmental psychology and where implications for
Knowledge Engineering emerge. A brief overview of the variety of cognitive
skills that are important in the Cognitive Science model will be laid out
next, and then specific focus will be directed toward problem-solving.
Problem - solving is by no means the only aspect of the cognitive science
model that applies to Knowledge Engineering; however, this discussion will
be limited to the problem-solving issues, with occasional contrasts brought
in fraa other related areas, such as learning.

An Information Procesing Framework

The starting point for the information processing framework is to ask,
What are the basic behavioral proceses that enable humans to make sense out
of environmental information? This means specifying how humans attend to
information, select critical information, and interpret their environments.
In short, how do people respond in an orderly %say to their environments, as
opposed to dealing with a "scrambled" world? Processes of attention,
perception, emotion, and language are basic mechanisms for filtering the
environment. What are the associated learned skills that utilize these
basic mechanisms?

The Information Fro-assing framework is useful for identifying the
critical behavioral processes. The framework is Sufficiently broad to allow
casting these questions from perspectives of the social environment, the
emotional environment, and the intellectual /cognitive environment. For
example, major concerns within behavioral science include how people learn
the information that is essential to their adaptation and mental growth, how
they store or remember experiences, and haw their performance is improved or
becomes more adaptive. The information that is learned, remembered, or
used can be social information, information about how they feel (their
emotions), or cognitive skills. The basic processes of language,
perception, cavrehension/interpertation, categorical grouping, attention,
etc, apply across demains of information. In a listing, then, the following
questions group into 4 major classes that imply different skills and
operations: (1) Howls information learned? (acquired); (2) Had is
information stored? (represented or encoded); (3) How is information
remembered? (retrieved or decoded); and (4) How is information used?

(*Plied),
The framework suggests looking at components of behavior, such as the

learning issues, the encoding or storage issues, the memory issues, and
perhaps most relevant to our discussion of problem-solving, the performance
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irques. This framework links Deem:mance to the other issues, such as to
learning and to memory so that one can begin to target sources of
performance edhancement or deficits at the learning (acquisition) or the
memory (retrieval) stages of processing information. The same questions
apply regardless of the danain of knowledge, since the underlying details we
want to know are about the behavioral processes of learning, namely how
information is stored, how information is remembered, and how performance is
improved with learning experiences. In eAddition, the basic behavioral
processes are further layered onto these questions by addressing concerns
such as how attending (attention processes) selectively influences
understanding an event. Thus, processes of selective attention, awareness,
inferences, and interpretation apply to any event, whether the event is
social, affective, or purely cognitive in nature.

In summary, the framework breaks down into learning, memory (two
aspects being representation and retrieval), and application or usage of
skills and information. Problem-solving is largely the last component,
though it has obvious links to learning and memory for achieving expert
status of efficient and effective performance. Next we will consider the
relevant aspects that lead to expert performance and follow with a
discussion of some additional critical aspects of performance that set
experts apart from novice problem-solvers.

Performance Differences

The most rudimentary, initial phase of analyzing a problem is to
characterize the subject matter -- the domain. While there are general
intellectual skills that are generic to all or most intelligent behavior,
identifying the domain of problem- solving (mathematics, geometry, measuring
ingredients before baking a cake) is to distinguish the relevant information
pertaining to the task at hand. Seoond, it is critical to impose some
organizational structure on the relevant skills. Thus, the beginning point
is to acknowledge domain specificity, and further to acknowledge that there
are identifiable, qualitative differences in ways for performing the task
that set experts apart frau unskilled or semi-skilled problem-solvers.

The Expert-Novice distinction can be apparent innerly forms: in how
easily or laboriously learning occurs; in differences in how information is
meted; in storage differences; in terms of access or retrieval
efficiency; and in terms of skilled application or vision for potential
application of domain-specific knowledge. Experts differ in terms of their
intonation levels, as would be expected, but additionally they appear to
employ more sophisticated and efficient learnina strategies, they categorize
the problem types and analytic strategies for solving a problem differently
fran novices; they remember problem indifferent ways; and they go about
problem solutions differently. Par example, Novices tend to work backward
fran goal states in their attempts to construct solutions to problems. As a
consequence, they may adequately by solving a prablen, but their
performance is oftern so problem-specific that it may have little or no
generality (transferability to new situations). Experts, by contrast, mark
faagga, starting from general principles and moving toward more specific
procedures for applying the principles; in doing so, they thoroughly explore
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the problem. space. In addition to considering a wider array of variables
that contribute to the problem, Experts end upleemalag about types of
related problems in a domain and hence, experts are different from novices
in both learning ar problem-solving skills.

It is important to think about the Expert-Novice distinctions in order
to address the differences between novice performance and expert
performanoe. Although the Expert-Novice distinctions discussed above appear
to be too general to be of any practical use, we will re-visit than below in
two different contexts and with increasing specificity. Since the task of
Knowledge Engineering is to move novice performance toward skilled, expert-
like performance, it is necessary to ask, first, what is it that experts do
and then to ask how one can move a novice toward the desired performance
level. This leads us to two important considerations in Cognitive Science:
Schema theory and general issues of Learning.

Schema Theory

Information has to be organized in same way in order to be meaningful
or useful. Cognitive psychologists have developed models of how knowledge
is represented in people's minds (e.g., Bower, 1975; Rumelhart & Norman,
1975; Schenk, 1975; Schenk & Abelson, 1977). Mese:models help define the
kinds of knowledge people have, how knowledge is acquired, how people
retrieve knowledge, and how information is used (Dehn & Schenk, 1982). One
theoretical model for how humans learn about organizational features of
events in their worlds is schema theory.

Schenk & Abelson (1977) asked a simple question to guide their model:
"What do we know about typical life events that we use for making inferences
and predictions?" They devised a descriptive model of what people know
about typical events so that inferences can be drawn. The Schenk & Abelson
model, termed schema theory, specifies sequences of actions that are linked
temporally and causally. The key element in the model is the script, which
is "a basic level of knowledge rapresentaticn in a hierarchy of
representations that reaches upward through plans to goals and themes"
(Nelson, 1982, p. 101). A scheme describes a present-state framework into
which actions are organized, in effect a structure into which new
information can be incorporated or accassodated (Sigel & Cocking, 1977;
Cocking, 1983). The scripts or schemes are well-specified and are concrete,
in contrast to abstract levels of goals and themes (Nelson, 1982).

Experimental studies have used this model for studying:T:9=y and
results indicate similar recall organization for children (Nelson, 1978) and
adults (Bower, Black & TUrner, 1979). These memory studies illustrate
similarities in event elements, event structure, sequences, ruferences to
implied but unstated related elements, common inferences, and general rather
than specific episodic themes. Scripts, therefore, are general in form,
temporally organized, consistent over time, and socially accurate (Nelson,
1982, p. 103). Research in recent years has expanded the model to include
how scripts, as generic organizational frames, are acquired and applied.
Research on application of schema theory-related topics includes concept
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devilorrust, conceptual thinking, classification skills, organizational
strategies, etc. (Gerhard, 1975; Cocking, 1983; Friedman & Cocking, 1986).
In all of these manifestations, the underlying argument is that organization
of information is a critical device for knowledge represention and storage.
Experts utilize broader "chunks" as they encode information and these
chunks are semantically organized (that is, they are meaningful units).
Experts, further, can identify more subamscoents to the broader group; that
is, the storage system is more efficient in that it subsumes related
informational units. In essence, efficiency for storage and retrieval means
that experts are capable of thinking and remembering in larger conceptual,
categorical classes into which lesser information can be incorporated. The
net effect of this approach, and that which distinguishes experts from
novices, is, in a word, efficiency.

A concrete example illustrates the application of schema theory in
teaching organizational and cammication skills. Gerhard (1975) uses
paragraph writing as a soy of teaching categorical thinking strategies. One
first considers the range of elements to be included in presenting some
information on a topic. The next task is to decide which one of the list of,
say 6 items, is to be the organizing theme and to write a topic sentence.

The net effect of writing a sentence about each of the 6 elements after
deciding which is to be the organizing item leads to a topically organized
sequence of related items. In essence, schema theory posits that this is
how efficient storage-encoding and memory-decoding operate: only the
organizational category needs to be encoded or retrieved which results in
cognitive econany of informational structure. This, in effect, is also the
operational definition of a schema -- a superordinate organizational
fr,Aework.

The discussion implies that schemas are critical components of problem-
solving. Equarlyolovious, then, is the importance of schema acquisition to
Knowledge Engineering, since the goal is to move people in the daection of
becoming effective problem-solvers.

One possible mechanism for influencing learning and 'ognitinn is
instruction. VIgotsky (1978) argues that children learn to solve problems
through opportunities to solve than with more expert individuals. These
experts structure the problems to be only slightly IfOre difficult than
problems the child can solve on his or her own, and they direct the child's
problem-solving so as to allow the child to function at the upper ability
limits. Sams (Fguerstein, Rand, Hoffman, & Miller, 1980) posit that
parents mediate experiences for children by giving new experiences structure
and by responding to aspects of the environment so that there is a more
systematic, planful and logical structure. Research indicates that mothers
help children solve problems, classify objects, and prepare and check
memories for what is being learned.

But not all learning is influenced by experts who show= tell novices
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how to reason, plan, or solve important questions, however. Considerable
human learning occurs without instruction, through sensory systems 'wired'
into the human neural network for picking up critical envirmmental
information (J. J. Gibson, 1966). E.J. Gibson (1982) writes that
perceptual-based learning is "initiated through exploration motivated both
intrinsically, and extrinsically." Piaget's work focuses on many aspects of
learning that occurs with relatively little intrusion from expert
instruction or guidance (Sigel & Cocking, 1977). Thus, cognitive
psychologists who extoll the virtues of exploration and learning by
discovery are making a distinction between knowledge that is directed toward
a specific goal (knowing the date of an historical event) and non-specific
knowledge goals of general characteristics of a domain (determining if an
ice cube melts faster sitting on a saucer or in a dish of roam-tanperature
water). This distinction is an important one in effective problem-solving,
as will be pointed out in a subsequent section.

Thus, most people consider it self-evident that instruction is
necessary or that it is at least the most efficient manner of transmitting
values and for conveying the symbol systems of a culture (Gardner, 1986;
Gardner, 1984). Reading, writing, and mathematics most probably cannot be
picked up without instruction. Specific systems of reasoning and problem-
solving such as those represented by the scientific method probably cannot
be acqudxte0 without instruction and tutoring. Evidence from cross- cultural
research and from training studies clearly demonstrates that instruction
facilitates learning and cognitive functioning. This is true for a variety
of learning tasks, including perceptual, memory, and logical reasoning
tasks, free- recall, classification, recognition memory, and so forth (see
Rogoff, 1981 for a detailed review). While much of the debate surrounding
whether schooling actually alters cognitive development and results in
improved cognitive functioning, the fact is that instruction has been shown
to change performance on specific cognitive tasks. Specifically,
instruction has been shown to lead to improved cognitive performance on
tasks such as physics and mathematics problem-solving (Larkin, Heller &
Greeno, 1980); writing (Hereiter & Scardamalia, 1978; Gerhard, 1975);
reading (Brown, Campione & Day, 1981); and cognitive skills such as
thinking, problem-solving, and reasoning (Meichenbaum, 1977; Nickerson,
Perkins & Smith, 1980).

It is connztly assumed that practice on a large number of typical
problems is the optimal method of acquiring problem-solving skills. That
is, rote learning-by-doing methods of education are assumed to be the best
training exercises. Sweller (1988) and others question this assumption,
liven what Cognitive Science resaardinrdels have begun to indicate about
low domain- specific knowledge affects problem-solving. There is reason to
believe that practice skills are useful for certain learners (e.g., children
who have a limited skills repertoire and a limited arsenal of past
experiences from which to draw), but the Cognitive Science literature for
adult learners clearly challenges the myths of routine practice exercises as
an efficient means of promoting expertise.

Owen & Sweller (1985) showed that nonspecific goal-oriented problem-
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solving could be contrasted with conventional means-ends problem-solving
strategies to illustrate critical, meaningful differences between the two
approaches. The former approach is termed "forward working," whereas means-
ends problem-solving is termed "backwards working." Forward working is an
expert system that is schema-d-iven. In this approach, the problem state is
analyzed and the necessary operations as well as options are specified for
moving toward a problem-solution of a goal state. This type of analysis
sets up a contrast between present conditions with what is needed to reach a
specified desired set of circumstances. Amens-ends approach, by contrast,
tends to invoke all of the steps of achieving a goal without regard to
redundancy or irrelevancy of certain steps. A forward-moving approach also
focuses upon possible alternatives through exploring the problem and
discovering features that make one problem type different from another.
Considerations of this sort are generally avoided if one's eyes are fixed
only on an end goal state of a means -ends strategy. Sweller and his
colleagues (Sweller, et al, 1983) replaced specific goal-oriented directions
in a problem set with non-specific goals (e.g., "calculate as many variables
as you can" versus "calculate a race car's acceleration "). The effect
proved beneficial in schema acauisition, that is in Learning. While the
practice maybe questicnable for performance (that is, it is not as fast or
as direct), this alternative approach clearly taught the learners more
about the task than the traditional set of instructions. The net effect was
faster acquisition of expert-like schemes and edema-driven approaches to
problem solving.

Sweller accounts for this learning efficiency in terms of the reduced
memory load required for forward working problem-solving, al, compared to
what is required in means-ends approaches. Fria this and other studies
conducted by the group, Sweller concluded that "Problem solvers [who
organize] a problem according to means-ends principles, suffer from a
cognitive overload which leaves little time for other aspects of the task.
The overload can be manifested by an increase in the number of ...errors"
(Owen & Sweller, 1985; Sweller, 1988, p. 276). Sweller also points out that
trying to learn problem-solving strategies (acquiring schemes) at the same
time as solving problems via means-ends strategies is akin to doing two
things at once. Solving the problem is the primary task, while trying to
figure out what may be useful to know in the future is a second task. The
questi?on, then, is whether there a dual task when one is "learning by
doing"

The test of the "dual task theory" was to look at both phases of
performance. If the primary phase of means-ends strategies places a heavy
cognitive processing load, the net effect should be lwered support or
interference effects for the secondary phase. By contrast, if experts use
cognitive classification strategies to remember and access meaning for
similar types of problems, then one might expect facilitation across the two
phases. Experimental results indicated no differences in the total time it
took to solve the problems, but that there was a heavier cognitive
processing load in the conventional means -erns approach --that is, the dual
task interferred with the seoandary task unless a more expert-like schema-
driven strategy was employed. The conclusion was that
there was more learning during "doing" (that is, during performance) when
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the doirxj was scheme-driven.

This raises the question, Wh5ris there interference? The answer lies
in the differences between 141Li Ig schemes and means-ends analyses. Two
critical mechanisms underlie learning and problem-solving: (1) attention
and (2) processing capacity. In the Cognitive Science model, acquisition of
information and arplication of information are distinct processes; hence,
learning and problem-solving are seen as largely unrelated processes. For
mes-ends analyses, a problem solver attends to differences between a
current problem state and a goal state. Previous states, in this framework
are relevant only for preventing repetitions or retracing steps. By
contrast, in schema acquisition a problem solver needs to be able to
recognize and classify a problem as belonging to a class of problems.
Within this framework, previous problem solutions represent a problem state
for that particular problem and as such a represented solution may be an
important =roma of problem-solving. But the goal state is not the only
critical feature for understanding the problem (as it is in a means-ends
representation). What is important in schema theory is the role of
ImEresentations in memory for purposes of acquisition. That is, there is a
structure into which new information can be incorporated. Piaget terms the
acquisition of new information "assimilation," while the molding of that new
information into an existing structure is an "accommcdative" process. By
this account, then, variables of structure that relatc to perception and
perceptual pick-up are likely to be most associated with schema acquisition,
while variables related to meaning are most relevant for encoding and
retrieval in performance tasks.

Memory is also important to schema acquisition in that categories are
memory-related, but this is not to say that learning categories of
information is dependent upon memory. This distinction, while subtle, is a
radical one that is revolutionizing instruction. For example, math teachers
can present a problem set which capitalizes upon classroom examples which a
student has to recall, recognize, and remember for their unique or relevant
features. Such a routine is preferred to repetitive practice sets because
it draws upon sesory for matching past problem types with current demands.
A math problem which requires youngsters to make some, measurements and to
convert those measurements into fractions prior to setting up the problem
for solution means that the student asse*iss problem-state and goal-state
and identifies relevant variables without recourse to memory skills of
matching present end-goal states with remembered goal-states. In the
Cognitive Science model, therefore, mnemonic skills (memory) are relatively
more important to schema acquisition than to problem - solving. Memory, in
fact, maybe an important source of interference in performance or schema-
application when the wrong problem prototype is pulled frau memory. This
conclusion is certainly counter-intuitive to those who believe that
performance is based upon matching a
problem- solving strategy to the problem type as classified an surface-level
problem features.

An example of this "matching to memory" strategy and the errors it can
lead to has been Shown in math word problems (Clement, 1982; Mestre, 1988).
The structure of English grammar leads one through a left-to-right
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processing strategy that corresponds to the left-right reading scheme. This
surface-level feature, encoded as a basic =gory unit, often leads to errors
for solving 3 certain class of algebra problems, since English syntax often
transposes subject and object, or in algebra problems, the x and y
variables. Metre presents the following example that evokes the tendency
for using the left-to-right reading strategy to parse an algebraic statement
into an algebraic equation: "Write an equation using the variables S and P
to represent the statement 'there are 6 times as many students as professors
at this university.'" Tim common error, termed the variable-reversal error,
consists of the answer 6S*.r, even though the respondents acknowledged that
there were, in fact, more students than professors. The error stemmed from
focusing on the problem's surface features coupled with the highly practiced
habit of parsing a sentence using a sequential left-to-right strategy. If
students had focused on the problem's deep structure, this error could have
been avoided. Memory, as invoked in means-end strategies by novices,
illustrates how selective attention to surface level details can lead to
misclassifying both the problem type and relevant strategies.

Another source of interference during learning is from the demands
placed on the cognitive system -- or the cognitive load. Means-ends
analyses used by novices also have a "cognitive load" associated with than
that potentially interferes with learning. Means -ends solutions may be
"efficient" in the sense that the strategy generally leads to few dead ends.
libwever, Sweller contends that there is a price for this efficiency: the
strategy requires the problem solver simultaneously to consider the problem
state, the goal state, the subgoals, and all the problem-solving operators.
The net effect of this coordination is a heavy toll on a Limited prooesing
capacity. Sweller believes that all of this effort leaves little cognitive
capacity for attention to schema acquisition (learning). So much effort is
devoted to problem-solving that little cognitive capacity is allocated to
learning and exploring the problem space.

Evidence that there is such a thing as cognitive load has been obtained
by looking at a number of criterial variables relating to working memory.
Evidence for increased, excessive, and unnecessary cognitive load imposed by
means-ends approaches in problem-solving has come from analyzing the kinds
of strategies employed; the categories of viable, usable solutions; the
speed of solution; errors in subsequent problems; and modeling techniques
(Sweller, 1988). It should be pointed oft, however, that some of these
criteria fit performance better than learning objectives. Is speed of
problem solution critical? It depends. In planning-related tasks
(Friedman, Scholnick & Clocking, 1987) the criterion, of efficiency in
carrying out :erformancemem often preferred to a criterion of speed when
accuracy or appropriateness was not altered. Error types, another
criterion, may reflect developmental status of the task performer. In an
example such as solving a language-related problon, some error types are
liars sophisticated" and repraseftadvanoeidenelcsmental stages of language
growth than earlier erroxst.though both, on an absolute scale of
right/wrong, are classified as errors. cognitive load and processing
capacity, therefore, have to be considered relative to standards for
specific problems and problem-solvers. That is, not all problems are of
equal difficulty and expert systems, while specifying no age-relatedness,
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generally imply adult status.

Application:
The Expert- Novice Paradigm As AMeans of Studying

Problem-Solving

In this section we elaborate on some of the general concepts discussed
thus far. Again, the focus is on comparing and contrast5ng the behavior of
Experts and Novices in various cognitive tasks. The examples provided back;
should illustrate how Cognitive Science arrives at the =dela of knowledge
acquisition, knowledge representation and retrieval, and knowledge usage
discussed above.

The goal in studying the end points of the expertise dimension is to
gain insights on the salient features of expertise and novicity, and thereby
gain insights on efficient instructional methods for moving novices toward
expertise. Although indications are that expertise is very
context-depexient (Brown, Collins & Cuguid, 1989; Perkins & Salomon, 1989)
and generally does not transfer from one domain to the next (e.g., an
expert mathematician will not be able to use his or her mathematical
expertise in the domain of chess and vice versa), results from expert-novice
studies are generalizable across domains. That is, there are many
commonalities in the way that experts from different domains acquire, store
and use domain-related knowledge to solve problems.

Historical Beginnings -- Chunking

Findings from expert-novice studies offer suggestions for the design of
efficient instructional approaches in promoting expertise. Some of the
first studies of expertise were conducted in the domain of chess (Chase &
Simon, 1973; de Groot, 1965; Newell & Simon, 1972). The task that separated
strong from weak players was a memory recall task where players were shown a
chess board configuration for a very short period of time and asked
subsequently to reproduce as moth of the board configuration as they could.
Experts were able to reproduce the position of the majority of the chess
pieces on the board, whereas weaker players could not match the experts'
recall ability. Memorization ability had to be discarded as an explanation
because strong and weak players were equally poor at recalling board
configurations made by randomly arranging chess pieces.

These findings have been reproduced in the &mains of electronics (Egan
& Schwartz, 1979) and computer programming (Ehrlich & Soloway, 1984). For
example, expert electronic technicians are capable of reproducing large
portions of complicated circuit:diagrams after brief exposures, whereas less
experienced technicians could not. Similarly expert programmers could
recall large sections of program after brief exposures whereas novice
programmers could not. As in the chess experiments, skilled electronic
technicians did not hold the.same advantage over novices in the recall of
circuits composed of randomly arranged ayMbols, and expert programmers were
as poor as novices in recalling "ncosensem computer programs ccapoeed of a
series of randomly arranged programing statements.
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These differences were explained in terms of experts' ability to group
together clusters of informaticn according to some underlying principle or
pattern. In chess, the experts grouped together clusters of chess pieces
according to some underlying strategy or goal of the game, and thus recalled
the board configuration by first recalling the strategic clusters and then
the individual pieces within each cluster. In electronics, the experts
grouped together clusters of individual canpcnents (e.g. resistors,
capacitors, diodes, etc.) into functional unit clusters (e.g., amplifiers,
rectifiers, etc.). The mechanism by which items are grouped by same
underlying goal or principle is called chunking.

Chunking has also been observed in problem solving tasks among expert
physicists (Larkin, 1979). Expert physicists engaged in solving classical
mechanics problems could generate clusters of relevant equations in spurts,
suggesting that these clusters were accessed in memory via same underlying
principle or concept. In contrast novices generated equations individually
with time gaps separating each equation generated.

From Chunkina to Hierarchical memory Networks

The chwaldingmechambmictserved in experts is a precursor to the schema
theory described earlier which is so useful in describing how experts'
knowledge is stored in memory. The experts' domain knowledge in memory can
be thought of as a hierarchical network where there is r. pecking order of
importance associated to where a piece of information is stored in the
hierarchy. At the top of the \texarchyare a small matter of "umbrella"
conmpts to which are attached relevant ancillary concepts, facts, and
prooedures for applying related knowledge in problem solving situations; the
umbrella concepts and their associated declarative and procedural knowledge
can also be described in terms of schanas (or schemata). Unlike experts,
the novice's memory store is more amorphous in structure.

That experts have a conceptual hierarchy is also manifested in
experiments of problem categorization. One oanamtly used paradigm for
problem categorization experiments is to give the subject a stack of cards
each containing a typed problem, and ask the subject to place the cards into
piles according to similarity, of solution; that is, those problems that
would be solved similarly should end up in the same pile. Vmdings from
card sorting experiments reveal that experts cue on the underlying concept
or principle that needs to be applied to solve the problem as the
categorization criterion (Chi, Feltovich & Glaser, 1981; Hardiman, Dufresne
& Metre, in press; Schoenfeld & Herrmann, 1982); this is referred to as
cuing un problem' deep structure. For exanpae, expert physicists will
place problems requiring the application of Newton's Second Law into one
pile, problems requiring the Work Energy Theorem in another pile, and so on.
In contrast, novices appear to cue on problems' superficial similarity in
deciding solution similarity. For example, novice physics students tend to
make problem piles in which the problems share sums common object,
terminologyorother superficial attribute (e.g. problems having to do with
inclined planes are placed in the same pile, those having to do with
friction are place in another pile, those having to do with rolling objects
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are placed in a third pile, and so on). For obvious reasons, this is
refnred to as cuing on problems' surface features.

Bert- Novice Differences in Problem Solving Style

Glaser and his collaborator,: (Chi & Maser, 1981; Glaser, 1984, 1989;
Rabinowitz & Glaser, 1985) discuss a profile of expertise that incorporates
many of the constructs discuEsed already. Among the salient features of
expertise are a large, highly specialized knowledge base, the rapid
perception of meaningful patterns and fast access to relevant knowledge fran
mmiory appropriate for the recognized patterns, a rich arsenal of
procedures for implementing principles in a forward fashion frail givens to
goals, and a self - monitoring medmism by which experts regulate/evaluate
the validity of problem solving moves.

In quantitative &mains such as mathematics and physics, many of the
Expert-Mvice distinctions in problem-solving style became readily apparent.
tbr maple, novices clearly display their tendency for using the
bscksard-working means-end analysis when solving problems (Larkin,
McDeuxott, Simon & Simon, 1980a, 1980b; Sin-en & Simon,1970). Unlike
novices, experts' problem solving style is more forward- working and
principle-based. Experts appear to begin the process of constructing a
pmblem's solution by performing a qualitative analysis of the problem in
ten' of principles and heuristics that they may wish to apply (i.e., they
use the problem's deep structure in performing the qualitative analysis).
The result of this analysis can be thought of as a high level strategic map
that allows the expert. efficienty wave forward from the problem's givens
and from the selected principle(s) and heuristics toward the goals. That
ability to perform qualitatNe analyses is an expert trait vas illustrated
in a study veers experts and novices were asked to articulate the approach
they would use to solve problems (Chi., et al., 1981). It was found that
exports were very eloquent in stating the principle that they would apply
and what procedures they would use to instantiate the principle, whereas
novices did not discuss a strategy for solution; rather, novices jumped into
the solution itself, stating equations they would use in solving the problem
without discussions of general principles or procedures.

&23RgIELft:ertise

At this point the attentive reader might reason that a quick and easy
method for roving novices toward expertise is to make than aware of experts'
characteristics and the powerful meth( 'a that they use to solve problems.
This approach is naive. Simply telling novices what the expert's
characteristics are does not mean they will be able to employ than or
emulate them. The arsenal of procedures possessed by experts to solve
problems is tied to a rich knowledge base. Thus, teaching novices
generalized expert-like heuristics, evert if they understand them and are
eager to apply them, is inf efficient if they do not know I'm and when to
apply them within the context of the domain. Powerful problem solving
techniques must be accatpanied by the knowledge base within which to apply
the techniques (Schoenfeld, 1985). Recent research on instructional
approaches based at cognitive research findings indicate that there are more
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methods farhelpisKincmioes reach expert status.

One study by Eylan and Reif (1984) investigated the influence of the
form in which a physics argumentimas presented. One group of subjects
received the argument in a hierarchical format (i.e., high level concepts,
procedures and goals were separated from information deriving from the high
level information), while another group received the same argument in a
linear, nor-hierarchical format. The group receiving the argument in
hierarchical farm performed significantly better on both recall and problem
solving tasks. Mese results suggest that the organization of a
presentation can be ac important as its content in teams of people's ability
to assimilate it in meaningful chunks and use it in problem solving
settings.

In another study Heller and Reif (1984) trained novices to generate
qualitative analyses of physics problems involving Newton's Second Lid
before they were allowed to solve the problems. Subjects were trained to
perforate detailed analysis of a problem before attempting a solution, to
determine what relevant information should go into the analysis of a
problem, and to decide what procedures can be used in carrying out the
solution plan. This training resulted in substantial improvement in ability
to construct problem solutions. These researchers attributed the success of
the treatment to the explicit teaching of qualitative analyses that precede
experts' problem solving, and accurately point out that qualitative analyses
are seldom taught in physics courses.

Finally, tare recent studies (Mestre, Dufresne, Gerace & Hardiman
1988; rugger, Dufresne, Gerace & Mestre, 1987) investigated the possibility
of promoting expertise with a treatment encompassing all of elementary
llassical mechanics. The treatment used in this study consisted of
=straining novices who had performed reasonably well in a mechanics course
to foliage hierarchical, top-down analysis of physics problems. This
expert-like analysis began by asking the subject to select a fundamental
principle that could be applied to solve a problem under consideration.
After selecting a principle, the subject had to specify the principle
further (e.g. select ancillary principles and concepts), and instantiate the
principle through some appropriate procedure. Nb quantitative information
(i.e. equations) appeared throughout the analysis until the analysis was
completed; at this point, the subject wee shown the principle, and procedure
used to instantiate it, in equation form. This equation, or set of
equations, could then be used to generate a solution to the problem. In
order to streamline the analysis, the hierarchical approludiwas implemented
in a menu-driven, computer-based environment. Subjects showed significant
improvements when compared to control subjects in ability to categorize
probleas according to deep structure and ability to draw an principles in
performing a cralitative analyses of problems. What is interesting about
this study is chat subjects were neither trained to use the approach nor
provided with feedback to help them ascertain whether or not they were
actually performing the analysis correctly. Subjects were simply exposed to
the top-down, principle-based approach.

It therefore appears that exposing novices to approaches based on
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applying principles and procedUrsa in a forward manner helps than appreciate
the role cd penciples in problem solving. Amore recent extension of this
work indicates that those who stand to reap the most benefit from this
approach are novices who initially show medium to low proclivity toward
cuing on deep structure in problem categorization (Dufresne Gerace
Hardiman Metre, in preparation). This is encouraging since it implies
that those who improve most from exposure to expert-like approaches to
solving problems are novices who exhibit the least expert-like behavior.

Artificial Intelligent TUtors

Au entirely different approach to promotingempertise combines the
power of technology, with the advances in cognitive science: Artificial
Intelligent TUtors. An AI tutor is a computer-based system that "reasons"
about the learner and tailors instruction to maximize learning. As auch, an
AI tutor must model four separate entities: the domain knowledge, the
communication environment (control system, screen design, menus, windows,
etc), the cognitive processes of the student, and the tutoring strategies.
The domain knowledge is modeled with the help of domain experts. TO build
an AI tutor that teaches problem solving in physics, the design team would
include expert physicists whose job is to articulate all relevant knowledge
needed to teach the desired skills. Once this knowledge is articulated, it
must be coded and represented so that the computer can use it to reason
about the domain. FOr example, the tutor must be able to decide whether or
not a student's course of action is appropriate for solving a particular
problem in order to decide whether to leave the student alone, or to
interrupt with same intervention strategy.

Modeling the coumunication envircsiment often involves a team of
computer scientists, human factors engineers and cognitive psychologists.
In modeling the envircoment, the team must decide how the system will Thar;
together." Questions that must be answered before the communication
environment is modeled include: What actions will the student be allowed to
make?, What actions will the computer make in communicating with the
student?, Homrwill the learning envlronemnt look (i.e., will it be a
multi-window menu-driven envircnment, will it include graphics and
simulations, will it let the student explore the problem space, etc), How
will the domain knowledge, the communication environment, the cognitive
processes of the student, and the tutoring strategies be linked? (i.e., how
will a "controller" decide how to move among these four entities?).
Modeling the environment is largely limited by technology, and recent
advances to processing speeds and in computer graphics, displays and
simulations (together called "hypowmadie) make this a promising area for
future design of AI tutors. Perhaps the most important task in designing
the tutoring environment is to keep the student focused on the tutor's goal;
the danger lies in making the environamit too rich so that the student gets
lost wandering through the hypermedia displays.

Perhaps the most difficult aspect to model is the student's cognitive
processes. Despite the great strides cognitive science has made in the last
decade in understanding the nature of learning, there is still much that is
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rat known. -In order to build a model of the student's knowledge, the tutor
needs information on a multitude of factors. For example, the tutor needs a
method for deciding whether student errors are conceptual, strategic,
procedural, or due simply to skills-deficiency (i.e. poor algebraic skills).
The tutor also needs tolaxxeirermuch free reign to give the student, that
is, how long should the tutor wait after an error is committed before
interrupting the student; to interrupt too often interferes with learning,
but to let the student go too far astray is also counterproductive. Tied to
when and how often to interrupt the student is the student's intellectual
and emotional profile -does the student lack motivation ?, Is the student
bright and motivated, and thus often bored with the pace of instruction or
with the same tutorial strategy? Although not very helpful in answering
these last questions, the research findings reviewed oarlier are the basic
ingredients needed to model the student's cognitive processes. The perfect
design team for modeling the student's cogntive processes would include

J .cogicive scientists, instructional designers, expert teachers and
psychologists.

The fourth factor needed is a model of the tutoring strategies that the
tutor will employ. Here one needs to decide haw to structure the
student-computer dialogue. Possible tutorial approaches include Socratic
dialogue, analogical reasoning, immediate corrective feedback, worked-out
examples, etc. Of course, the difficult part is deciding what particular
combination of tutoring strategies work best for a particular student. This
is something that the tutor mist decide dynamically as it works with the
student. If a particular tutoring strategy does appear to be ineffective,
the tutor needs to switch to a different cne. If one strategy was effective
for a while but the student is no longer thriving under it, it may mean that
the student is getting bored and losing motivation; the tutor needs to
assess these situations and optimize an selecting the appropriate
combination of tutoring strategies.

Tb date, mmatyAI tutors of varying sophistication have been built in
domains such as algebra (McArthur, Stasz & Hotta, 1987), geometry (Anderson,
Boyle & Yost, 1985), electInie troubl-shooting (Brown, Burton & De Kleer,
1982; Mite & Frederiksen, medical diagnosis (Clammy, 1982, 1986),
programing languages (AndeAxat & Reiser, 1986; Johnson & Soloway, 1984),
military eguipent:maintenance (Tbwne & Munro, 1988), complex industrial
processes (Woolf, Blegen, Jansen & Verloop, 1986), and various other
domains. (For an overview of existing AI tutors, we refer the reader to
Woolf, 1988). As one can surmise from the foregoing discussion, designing
and building AI tutors is an expensive undertaking.

New Directions and Future Trends

We began this chapter by defining Information Processing as the link
between Cognitive Science and Knowledge Engineering. The paradigm for IP
has been language-based, by and large, as could be seen in the examples
cited (e.g., how experts analyze their skills - Chi, et al, 1991; and how
variable-reversal errors conform to surface- level characteristics of English
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syntax - Maitre, 1988). New developments are beginning to explore other
sensory processing approaches of IP, such as optical scanning, tactile
responsiveness, auditory processes of echolocation, etc. While optical
scanning is currentlymechanical both in paradigm and in concept, visual IP
and tactile IP are current research paradigms that hold considerable promise
for future developments.

Clifton and Perris (1988), for example, is studying the roles of
audition versus vision in the development of infants' guided reaching by
attaching infrared light-emitting diodes to their fingers and video-
recording reaching moments when the infant is in a darkened room.
Reaching toward sound stimuli clearly cannot be visually-guided in such
situations. The research will aid in understanding developmental sensory
integration across projectile and ballistic reaching, vision, and auditory
information processing.

Robotics is another application of Cognitive Science which is utilizing
Tram human skills of sensory information processing. Friedman &

Coming (1986) reviewed research on trydblind persons were taught to
identify and to locate in space complex forms, objects, figures, and faces
(Back-y-Rita, 1980; 1981; 1982; 1983). The blind persons received visual
information by controlling a television camera that delivered visual
information to the skin through an array of vibratory stimulators or
electrodes at the back, thigh, or abdomen. The authors reported that "the
subjective perception of the obtained info/nation was not cn the skin; it
was accurately located in the three-dimensional world in front of the
camera" (Friedman & Cocking, 1986).

Exploration of the wide array of sensory experiences and their
corresponding sensory systems will contribute to the Cognitive Science
revolution that is nchrunderway. The Information Processing framework is
only beginning to define what constitutes "information." The associated
information processing skills and strategies for achieving expert use of
these skills in solving human factors-related problem are the challenge for
Cognitive Science in Knowledge Engineering.
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